Program: M.Sc. Inorganic Chemistry (major)

Level: Graduate

A. Basic InformationTitle:Group theoryCode:CH6119Credit hours:2 hLecture:2h/weekTutorial:0Practices:0

B. Professional Information:

- 1. Overall Amis of the course:
 - Applications of symmetry in chemistry
- 2. Intended Learning outcomes of the course (ILOs), after completing this course the student will be able to:

i. know and understand:

- Symmetry elements and operations
- Point group
- Properties of the groups and their elements
- Classes
- Matrices and Vectors
- Matrix Representation of Symmetry Operation
- Matrix Representation of Point Group
- Reducible and Irreducible Representations
- Character Tables

ii. Gain intellectual skills such as:

- Hybridization of atomic orbitals
- Symmetry Adapted Linear Combination (SALC)
- Symmetry Aspects of Molecular Orbital Theory
- Symmetry and Ligand Field

iii. Have professional and practical Skills such:

- Vibrational Rotational spectroscopy
- Symmetry and electronic Spectroscopy
- iv. Obtain general and transferable skills such as:
 - Information on bond strength, stereochemistry
 - Introduction for students intending to do theoretical chemistry

3. Content

Торіс	No. of	Lecture	Tutorial/Practica
	hours		
Definitions and theorems of	2	1	0
Group Theory			
Molecular symmetry and the	6	3	0
Symmetry Group			
Representations of Groups	4	2	0
Group Theory and Quantum	1	2	0
Mechanics			
Hybrid Orbitals and Molecular	2	4	0
orbitals for AB_n – type			
Molecules			
Symmetry Adapted Linear	1	2	0
Combination (
Molecular Vibrations	4	2	0
Symmetry and Electronic	4	2	0
Spectroscopy			

4. Teaching and Learning Methods:

Lectures

5. Student Assessment Methods:

Assessment Schedule

Assessment 1:	on the fourth week
Assessment 2:	on the sixth week
Assessment 3:	on the ninth week
Assessment 4:	on the tenth week
Assessment 5:	on the twelfth week
Assessment 6:	on the fourteenth week

Weighting of Assessments

Mid – Term Examination and oral exam:	20%
Semester work:	20%
Final – Term:	60%
Total:	100%

6. List of References

F. A. Cotton: *Chemical application of Group theory*B. P. Lever: *Inorganic Electronic spectroscopy*C. Harris & M. D. Bertolucci: *Symmetry and spectroscopy*

7. Facilities Required for Teaching and Learning: Data show

Course Coordinator: Joseph J. Stephanos, Assoc. Prof. **Head of Department:** Prof. Ahmad Abd El Migid

Date: 3/10/2010